
HIL404.

Deploy HIL in a day. It is the only way.

4th Generation HIL.

Ultra-high fidelity redefined.

Tailored for automotive drives with the most detailed inverter models, spatial-harmonic electric motor models, CAN connectivity, and plug and play interface towards 3rd party test automation tools.

Applications

While automotive and aerospace industries have already adopted model based HIL testing, power electronics industry is only playing a catch up. The good news is that the 4th generation HIL delivers the unprecedented model fidelity needed for the most advanced motor drives and automotive power electronics applications.

Easy to use software tool-chain

User friendly and intuitive software is easy to use and master, even for first time users. Build your models and perform sophisticated test scenarios, in the comfort of your office.

What's new?

- Down to 200ns time-step.
- Down to 200ns Analog Output update rate.
- 3.5ns GDS oversampling on all Digital Inputs.
- Up to 4 processing cores.
- Real-time emulation of non-linear machines with spatial harmonics.
- Real-time emulation of semiconductor power losses.
- The most accurate Dual-Active Bridge (DAB) converter model.
- JMAG-RT FEM electric machine model import.
- HIL connectivity exploded: USB3.0, Ethernet, Gb/s serial link, JTAG, General Purpose IO (GPIO).

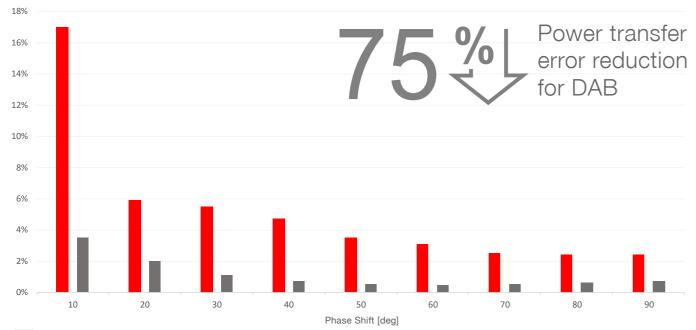
Typhoon HIL404.

From HIL to Rapid Control Prototyping. The most versatile platform.

Ultra-high fidelity supercharged.

The most accurate 100kHz Dual-active bridge (DAB) model.

Probably the two most demanding power electronics applications for HIL testing are in the Electric Vehicle (EV) domain, namely: high performance motor drive, and battery chargers. Such applications pose a significant challenge for real time simulation fidelity. This is especially true for


high switching frequency DC-DC converter applications (e.g. Dual Active Bridge (DAB)) where power transfer is carried out at high frequencies. In some applications, even a 500ns simulation step with time resolution enhancement is not fast enough to avoid major simulation errors.

■ HIL404, Ts= 250ns

The HIL404 is the fastest HIL product ever, with 200ns simulation time step and 3.5ns digital input sampling.

Our answer to the challenge is the 4th Gen HIL Device HIL404, our fastest HIL machine yet. With its ability to reach simulation time steps down to 200ns combined with input sampling resolution of 3.5ns it pushes the high-fidelity real-time simulation into a whole new dimension. To illustrate some of the benefits of HIL404, we did a comparative analysis of the relative power errors between the HIL402 and the HIL404 for a Dual Active Bridge (DAB) application.

The model is controlled by an external open-loop controller switching at 100kHz and with the dead time of 50ns.

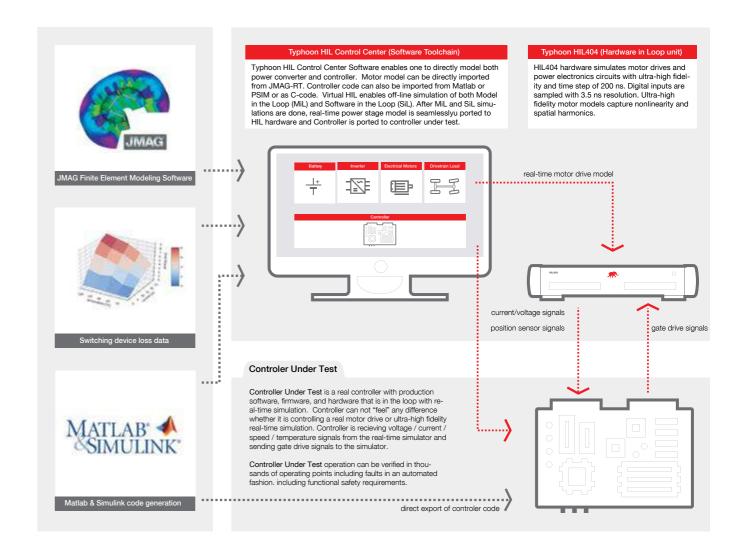
Power transfer is measured and compared against the analytical model for a given phase shift. The error is mainly caused by the limited time resolution of the simulator. Here we can clearly see the benefits of the 2.5 times smaller simulation time step and higher frequency sampling provided by the HIL404.

The highest fidelity electric machine models. One click away.

However, HIL404 is so much more than just a faster HIL402 tuned for very-high frequency applications.

It is a device from the same family of Typhoon HIL products, yet packed to the brim with latest technology that brings many advanced features of our industrial grade 6-series devices to the 4-series, such as:

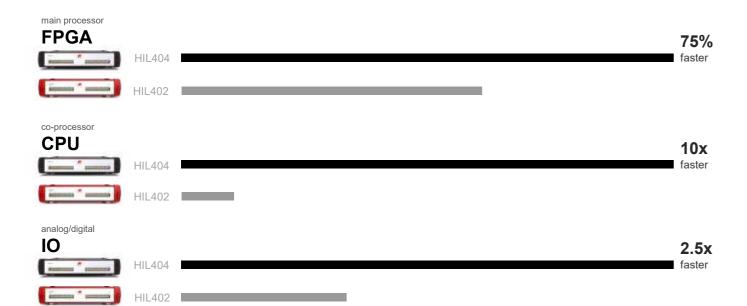
- Nonlinear machine modeling.
- 3.5 ns GDS oversampling on all Digital Inputs.
- Up to 4 cores FPGA processor configurations.
- Accurate real-time converter power losses simulation.
- Extended connectivity with out-of-the-box support for CAN, RS232, USB 3.0, ETH protocols, including device paralleling support.

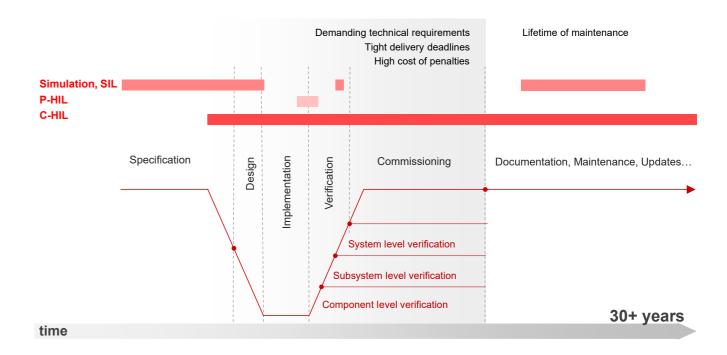

Seamless integration with Matlab/Simulink, JMAG, PSIM, and other model-based and physics-based simulation software

HIL 404 supports direct import of high-fidelity JMAG-RT electric motor models directly obtained from JMAG's Finite Element Models (FEM). With one click, the nonlinear and spatially varying inductance FEM derived models run in real-time with unprecedented fidelity. In addition, HIL404 supports one click import of power semiconductor switching and conduction losses directly from datasheet look-up tables. It has never been so easy to

run high-fidelity and accurate thermal models in real-time.

By leveraging the ultra-high fidelity and ease of use of the existing Typhoon HIL solution, and by bringing the extra speed to the table, the HIL404 makes the HIL testing methodology truly applicable for the emerging high frequency power conversion applications.


Rapid Control Prototyping Funcionality


A faster HIL means faster tests. Rapid Control Prototyping (RCP) is one of the key ways you can take profit of the high speed and fidelity of the HIL 404. Coupled with Typhoon HIL's software, RCP with the HIL 404 drastically accelerates your controller development cycle, saving you development time and cost, all while reducing investment risk.

The source of this speed comes from the significant hardware upgrades to the HIL 404

over previous generations. With real-time datalogging, analog I/O resolution as low as 200ns, and digital I/O resolution as low as 3.5ns, you can have the confidence in the high-fidelity models you use. But don't just trust us: the diversity of connection ports in the HIL 404, plus Typhoon HIL's wide array of native communication protocol support, means you can connect your hardware connections directly to the model and perform Controller Hardware-In-the-Loop (C-HIL) tests yourself.

More CPU power for faster signal processing and time critical protocols.

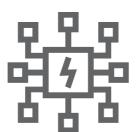


With C-HIL in your RCP process, you can test the real unmodified controllers with its real hardware, software, and firmware. The controller under test cannot 'feel' any difference between controlling real equipment or the ultrahigh fidelity, real-time simulation. It receives current/voltage signals, temperature signals, and position sensor signals from the real-time HIL simulator and sends the gate drive signals back to the real-time HIL simulator.

Typhoon HIL's software lets you use the same models from Model-in-the Loop (MIL), Software-in-the-Loop (SIL), and Controller Hardware-in-the-Loop (C-HIL) tests. This means that you can catch potential issues earlier in the development process and iterate new prototypes in your controllers before performing costly and potentially dangerous power lab tests. RCP and C-HIL testing also lets you have a greater test breadth, giving you greater confidence that new equipment will behave in the field as it does in the lab.

Controller HIL maximizes fidelity while minimizing cost.

Microgrid library with 3-level fidelity components


Typhoon HIL software comes with three types of built-in components designed for HIL 404 testing of specific real-world microgrid applications in its Microgrid Library:

- **Switching Components** (designed for system-level converter testing)
- Average Components (designed for a realistic and hardware-efficient emulation of dynamics without the need for a PWM interface)
- Generic Components (designed for easy parametrization in grid stability and system integration studies)

The generic components in particular make it easy for you to build and parameterize your own microgrid model in Typhoon's software. The new built-in components include:

- Battery ESS
- PV Power Plant
- Wind Power Plant
- Diesel Genset

Microgrid deployment is rapidly increasing, and this means it is necessary to have an efficient means to test them.

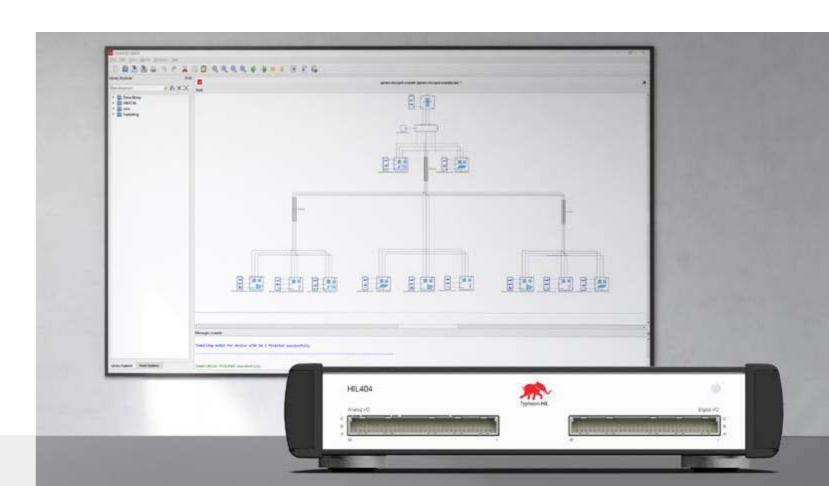
Battery

ESS

Generic Microgrid Components

The generic battery model consists of two main sub-components: the Battery ESS component, which contains a high-level control subsystem and a low-level control subsystem with the power stage, and the Battery ESS UI component where all inputs and outputs are defined. The purpose of this component is to **show typical behavior of a battery inverter**, such as: different operation modes (e.g. **PQ control, Droop,** and **VF control**), **limitations based on the nominal parameters**, and **fault detection**.

PV Power Plant


The main purpose of these components is to **emulate the characteristic behavior of a grid connected PV plant** in the following scenarios: active power curtailment and reactive power control, plant state machine, **fault detection and limits** according to nominal values, and **ramping functionalities for reference signals and MPPT.**

Wind Power Plant

The component consists of two main parts: the high-level control subsystem, and the low-level control subsystem with the power stage and all measurements. Model inputs and outputs are clearly defined in corresponding User Interface subsystems. The **turbines are easily parametrized** with just a couple of nominal parameters (e.g. **input voltage, nominal power**).

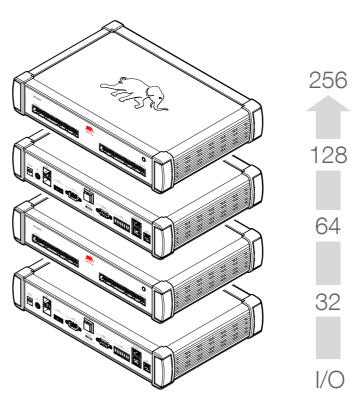
Diesel Genset

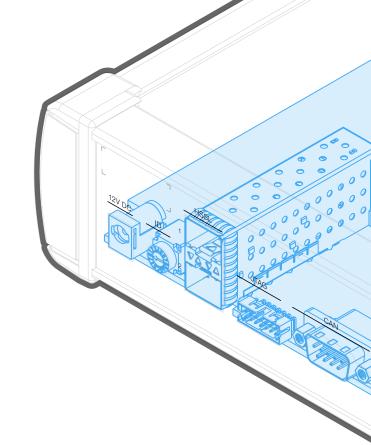
This component lets you **easily and practically parameterize a diesel genset** for system integration studies. Also, it includes new functionalities that are found in real-life (**protection, frequency drift**). Finally, it doesn't utilize the machine solver in HIL hardware resources, letting you create bigger models containing a larger number of generators (>4 per HIL device).

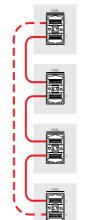
Device paralelling capability. Unparalleled.

Next Generation HIL comparison.

	· · · · ·			
	HIL402	HIL404	HIL602+	HIL604
Generation	3 rd	4 th	3 rd	3 rd
Simulation capacity				
Detailed (switching) DER models (1ph / 3ph)	8 / 4	8 / 4	12/6	16/8
Average DER models with detailed control loops (3ph)	20	30	30	40
Distribution network simulation	✓	✓	✓	✓
Time resolution				
Minimal simulation step	500 ns	200 ns	500 ns	500 ns
DI sampling resolution	6.2 ns	3.5 ns	6.2 ns	6.2 ns
10				
Analog I/O	16/16, +/- 10V, 16bit	16/16, +/- 10V, 16bit	16/32, +/- 10V, 16bit	32/64, +/- 10V, 16bit
Digital I/O	32/32	32/32	32/32	64/64
Connectivity				
USB	✓	✓	✓	\checkmark
Ethernet	✓	✓	✓	\checkmark
CAN		✓	✓	✓
RS232		✓	✓	✓
Time synchronization (PPS and IRIG-B)				✓
Paralleling		up to 4 units	up to 4 units	up to 16 units






Parallel your HILs.

Connect with amplifiers.

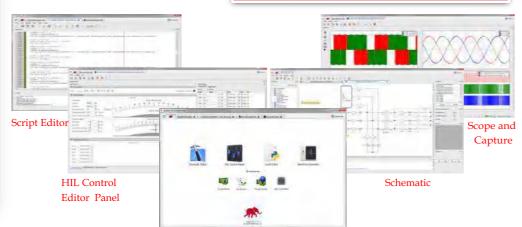
Endulge.

Use the high speed optical link to parallel your HIL404's while maintaining the small time step. The simulated model can grow, the simulation time step stays fixed. Whether you simulate a single motor drive or a complete microgrid, it is the same spiel.

Build a P-HIL testbed in a day. With the highest fidelity HIL on the planet and the optical link interface to any amplifier you can emulate an e-motor or a whole microgrid.

Two bidirectional SFP ports:

- Both can be used for paralleling
- One of the ports is multi-purpose and can be used for high-speed communication with other devices in the future


HIL404 technical details.

Processor	Processor	ZU4EG Ultrascale+ Zync SoC
	Processor configurations	up to 4 processing cores;
Analog inputs (AI)	Channels	16 channels
	Resolution	16 bit ADC
	Input voltage range	± 10V
	Sample rate	up to 1MSPS
	Linearity (DNL/INL)	1/2
	Gain error / offset error	0.01% / 1mV
	Input resistance	6.8 kΩ
	Protection	±24V tolerant, ESD protection
Analog Outputs (AO)	Channels	16 channels
	Resolution	16 bit ADC
	Output voltage range	± 10V
	Sample rate	up to 5MSPS
	Linearity (DNL/INL)	1/1
	Gain error; offset error	0.01%; 1mV
	Output resistance	0 Ω
	Current capacity	≥ 1mA
	Protection	± 24V tolerant, ESD protection
Analog IO connector	Connector	DIN 41612, type C 96 pin male connector

User Power Supply Unit (PSU)	±5V analog	up to 1A, resettable protection	
	±12V analog	up to 0.5A, resettable protection	
	+3.3V digital	up to 1A, resettable protection	
	+5V digital	up to 1A, resettable protection	
Digital inputs (DI)	Channels	32 channels	
	Input voltage range Vo	-15V < V _o < 15V	
	Output levels (low, high)	$(V_{IL}(max) = 0.8V; V_{IH}(min) 2V)$	
	Input resistance $10 \text{ k}\Omega$		
	Protection	±24V tolerant, ESD protection	
	DI Sampling resolution	3.5 ns	
Digital outputs (DO)	Channels	32 channels	
	Output voltage range Vo	$0V < V_o < 5V$	
	Threshold voltages (low, high)	$(V_{OL}(max) = 0.2V; V_{OH}(min) 4.8V)$	
	Output resistance	430 Ω	
	Protection	±24V tolerant, ESD protection	
Digital IO connector	Connector type	DIN 41612, type C 96 pin male connector	
Connectivity Ethernet		2x RJ45 connectors; 10/100/1000 Mbps	
	USB2.0	1x type B connector; 2.0 high speed	
	CAN	2x DB9 male	
	RS232	2x DB9 female	
	High speed serial link	2x SFP ≥ 5GHz	
	JTAG	Molex 87833-1420	
	GPIO	12+ multi-purpose IO pins, terminal blocks	
Housing	using Dimensions 293n		
	Weight	~ 5kg	
Power supply	Input voltage	100 - 250 VAC	
	Output voltage	12V	

Virtual HIL Device

HII Control Cente

Each part of Typhoon HIL Software Manual is focused on a particular software tool in the software toolchain:

- Typhoon HIL Control Center is the window which opens when you start Typhoon HIL software. In this section general description of Typhoon HIL Control Center & the main software components accessible from it, as well as additional software tools which can be directly invoked from its interface.
- Schematic Editor allows you to create high-fidelty models of the power stage for your real-time simulations. This section, therefore, provides detailed explanations of all features and functionalities of panels, panes and buttons accessible from the Schematic Editors, which currently include: Schematic Editor menus and toolbar, Library explorer, Device explorer, Schematic diagram scene, Execution rate visualization, Compilation status dockUndo/redo history window, and Schematic model pan/zoom controls. In addition to descriptions of GUI elements, this section also provides guidelines which allow you to take full advantage of all Schematic Editor's modelling functionalities, such as: Basic schematic diagram rules, Creating wires and wire nodes (junctions), using Subsystem elements, Mask, Schematic Icon API and User Defined Libraries, and, finally, Compiling the model.
- HIL SCADA allows you to interact with the real-time simulation of the model you created in Schematic Editor. To use HIL SCADA to its full potential, this section first provides detailed explanations of all window elements contained in HIL SCADA: Command Toolbar, Library Dock, Panel Explorer Dock, Model Settings Dock, Panel Tabs, Message Log Dock, History Dock and Status Bar. Of course, the section also provides detailed information on how you can use and customize various widgets (Action widgets, Connection widgets, Data Logging Widgets, Visual widgets and the Capture/Scope Widget), as well as guidelines how to troubleshoot Widget Errors, set up Panel Initialization and how to create your own HIL standalone boot configuration.
- Script Editor provides full test-automation capabilities as it allows you to write, open and execute various automated testing scripts written in Python, using appropriate Typhoon API libraries. The Typhoon HIL Test Suite is highly flexible test execution and precertification tool. Its main purpose is Standard Qualification using automated tests covered with detailed test reports. This section provides guidelines on the functionalities of Typhoon HIL Test Suite itself.
- Wave generator tool is software toolbox which allows you to fully customize your real-time simulations with real-date, generated data or the
 combination of the two. On the one hand, with the Source file generator you can generate various types of signals which you can change on the point
 level. On the other hand, the PV file generator allows you to either generate a PV panel file using various parameters or to import
 an arbitrary I-V curve from a .csv file and thus generate a PV panel from real date acquired at your test site.

Software Key Features: -

	Typhoon HIL Proprietary modeling environment for high-fidelity real time simulation		
Environment:	of power electronics and highly dynamic power systems.		
HIL Software Tools :	Schematic Editor HIL SCADA Python Based Script Editor Waveform Generator Signal Analyzer		
License:	Permanent (lifelong) software tool-chain license, quarterly updates / upgrades.		
Toolboxes:	Signal Processing toolbox, Power Systems toolbox, Microgrid library toolbox, Communication toolbox, API support (MATLAB, LabView and other software). PHIL Toolbox, Converter toolbox, Machine Toolbox, PSIM & JMAG Compatability		
Simulation Capabilities :	Embedded library of power electronics, power systems and microgrid components. Real time simulation of power electronics converters with switching frequency up to 200 KHz. Open/closed loop HIL testing and RCP Simulation of detailed IEEE distributions systems Simulation of detailed models of PV and WIND (DFIG and PMSG based) plants Control algorithm development and validation for laboratory scale converters used in renewable energy, power quality applications etcSimulation and testing of industrial controls for drives such as Direct Torque Control, V/f etc Control algorithm development and validation for drives applications, and SMPS and UPS Development of custom logic & algorithms used in advance control schemes (C function and Advanced C function) Dedicated solvers for Drives and Power electronics, 500kH2		
Others:	Test automation (scripting) using python Development support for project specific components. Ability to edit parameters of the system during real time execution. Internal PWM generator (6.7 ns) Offline simulation supported communication protocols: Modbus, IEC61850, CAN, DNP3 and Variable Ethernet Exchange. Power Supply: 230V, 50 Hz, 3.5ns, IEEE C37:118, Ethernet, OPC, Profinet, SFP Simulation Link		

Introducing the new "HIL ACADEMY" Get Registered @ https://hil.academy

Available Courses: 1. Certified HIL Specialist

2. Hardware in the loop with Virtual HIL - Exampleswalkthrough

Certified HIL Specialist

This course is carefully designed to get you working fast within the Hardware in the Loop (HIL)paradigm, in a way that develops your skills and confidence with the tool set which expands witheach unit. You will learn how power electronics and power systems engineers use HIL to design, test and verify complex and dynamic control and power management systems of alllevels. In order to follow the course units and acquire these skills at your own pace, you need a licence for Virtual HIL Device, which you can download from this page.

Typhoon HIL, Inc. 15 Ward Street, 2nd Floor Somerville, MA 02143 USA

Phone: +1 800-766-3181

Typhoon HIL GmbH Seminarstrasse 85, CH05439 Wettingen, Aargau Switzerland

Phone: +41 56 521 00 25

Tajfun HIL d.o.o. Bajci Zilinskog bb 21000 Novi Sad Republic of Serbia

Phone: +381 21 3010 476

www.typhoon-hil.com e-mail: info@typhoon-hil.com

Authorized Distributor:

QUARBZ Info Systems, INDIA www.quarbz.com, e-mail: hil.info@quarbz.com Contact no.:91 9838071684, 91 9838071685

